8 M ay 2 00 8 Square - Difference - Free Sets of Size Ω ( n 0 . 7334

نویسندگان

  • Richard Beigel
  • William Gasarch
چکیده

A set A ⊆ N is square-difference free (henceforth SDF) if there do not exist x, y ∈ A, x 6= y, such that |x − y| is a square. Let sdf(n) be the size of the largest SDF subset of {1, . . . , n}. Ruzsa has shown that sdf(n) = Ω(n65 ) = Ω(n0.733077···) We improve on the lower bound by showing sdf(n) = Ω(n205 ) = Ω(n0.7334···) As a corollary we obtain a new lower bound on the quadratic van der Waerden numbers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

5 M ay 2 00 8 Square - Difference - Free Sets of Size Ω ( n 0 . 7334 ) Richard Beigel

A set A ⊆ N is square-difference free (henceforth SDF) if there do not exist x, y ∈ A, x 6= y, such that |x − y| is a square. Let sdf(n) be the size of the largest SDF subset of {1, . . . , n}. It is known that n 0.733077... ≤ sdf(n) ≤ O (

متن کامل

A pr 2 00 8 Square - Difference - Free Sets of Size Ω ( n 0 . 7167 − ǫ )

A set A ⊆ N is square-difference free (henceforth SDF) if there do not exist x, y ∈ A, x 6= y, such that |x − y| is a square. Let sdf(n) be the size of the largest SDF subset of {1, . . . , n}. It is known that n ≤ sdf(n) ≤ O ( n(log log n)2/3 (log n)1/3 )

متن کامل

M ay 2 00 7 Remarks on the existence of bilaterally symmetric extremal

The study of extremal Kähler metric is initiated by the seminar work of Calabi [4], [5]. Let (M, [ω]) be a compact Kähler manifold with fixed Kähler class [ω]. The extremal Kähler metric is the critical point of the Calabi energy C(g) for any Kähler metrics g in the fixed Kähler class [ω], C(g) = M s 2 dµ, where s is the scalar curvature of g. The extremal condition asserts that ¯ ∂∇s = 0. In o...

متن کامل

Square-Difference-Free Sets of Size Ω(n0.7334···)

A set A ⊆ N is square-difference free (henceforth SDF) if there do not exist x, y ∈ A, x 6= y, such that |x− y| is a square. Let sdf(n) be the size of the largest SDF subset of {1, . . . , n}. Ruzsa [10] has shown that proved sdf(n) ≥ Ω(nlog65 7) ≥ Ω(n0.733077···). sdf(n) = Ω(n65 ) = Ω(n0.733077···) We improve on the lower bound by showing sdf(n) = Ω(n205 ) = Ω(n0.7334···) As a corollary we obt...

متن کامل

0 v 1 [ m at h . FA ] 1 8 M ay 2 00 5 On the definition of some Banach spaces over bounded domains with irregular boundary by

This note aims to clarify the interrelations of certain inequivalently defined Banach spaces denoted by C (Ω) for a natural number i and a bounded open set Ω. We give some sufficient conditions for the equality of these spaces, and present examples to show that the spaces indeed can be unequal for Ω having irregular boundary.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008